Empirical information criteria for time series forecasting model selection

نویسندگان

  • Md.Baki Billah
  • Rob J. Hyndman
  • Anne B. Koehler
چکیده

In this paper, we propose a new Empirical Information Criterion (EIC) for model selection which penalizes the likelihood of the data by a function of the number of parameters in the model. It is designed to be used where there are a large number of time series to be forecast. However, a bootstrap version of the EIC can be used where there is a single time series to be forecast. The EIC provides a data-driven model selection tool that can be tuned to the particular forecasting task. We compare the EIC with other model selection criteria including Akaike’s Information Criterion (AIC) and Schwarz’s Bayesian Information Criterion (BIC). The comparisons show that for the M3 forecasting competition data, the EIC outperforms both the AIC and BIC, particularly for longer forecast horizons. We also compare the criteria on simulated data and find that the EIC does better than existing criteria in that case also.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

DEPARTMENT OF ECONOMETRICS AND BUSINESS STATISTICS Empirical Information Criteria for Time Series Forecasting Model Selection

In this paper, we propose a new Empirical Information Criterion (EIC) for model selection which penalizes the likelihood of the data by a function of the number of parameters in the model. It is designed to be used where there are a large number of time series to be forecast. However, a bootstrap version of the EIC can be used where there is a single time series to be forecast. The EIC provides...

متن کامل

AN EXTENDED FUZZY ARTIFICIAL NEURAL NETWORKS MODEL FOR TIME SERIES FORECASTING

Improving time series forecastingaccuracy is an important yet often difficult task.Both theoretical and empirical findings haveindicated that integration of several models is an effectiveway to improve predictive performance, especiallywhen the models in combination are quite different. In this paper,a model of the hybrid artificial neural networks andfuzzy model is proposed for time series for...

متن کامل

Which Methodology is Better for Combining Linear and Nonlinear Models for Time Series Forecasting?

Both theoretical and empirical findings have suggested that combining different models can be an effective way to improve the predictive performance of each individual model. It is especially occurred when the models in the ensemble are quite different. Hybrid techniques that decompose a time series into its linear and nonlinear components are one of the most important kinds of the hybrid model...

متن کامل

Overview and Comparison of Short-term Interval Models for Financial Time Series Forecasting

  In recent years, various time series models have been proposed for financial markets forecasting. In each case, the accuracy of time series forecasting models are fundamental to make decision and hence the research for improving the effectiveness of forecasting models have been curried on. Many researchers have compared different time series models together in order to determine more efficien...

متن کامل

A hybrid computational intelligence model for foreign exchange rate forecasting

Computational intelligence approaches have gradually established themselves as a popular tool for forecasting the complicated financial markets. Forecasting accuracy is one of the most important features of forecasting models; hence, never has research directed at improving upon the effectiveness of time series models stopped. Nowadays, despite the numerous time series forecasting models propos...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003